Complex and hypercomplex discrete Fourier transforms based on matrix exponential form of Euler’s formula
نویسندگان
چکیده
منابع مشابه
Complex and hypercomplex discrete Fourier transforms based on matrix exponential form of Euler's formula
We show that the discrete complex, and numerous hypercomplex, Fourier transforms defined and used so far by a number of different researchers can be unified into a single theoretical framework based on a matrix exponential version of Euler’s formula e = cos θ + j sin θ, and a matrix root of −1 isomorphic to the imaginary root j. The transforms thus defined can be computed numerically using stan...
متن کاملFast Algorithms for the Hypercomplex Fourier Transforms
In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...
متن کاملFractional Fourier transforms of hypercomplex signals
An overview is given to a new approach for obtaining generalized Fourier transforms in the context of hypercomplex analysis (or Clifford analysis). These transforms are applicable to higher-dimensional signals with several components and are different from the classical Fourier transform in that they mix the components of the signal. Subsequently, attention is focused on the special case of the...
متن کاملA Double Exponential Formula for the Fourier Transforms
In this paper, we propose a new and efficient method that is applicable for the computation of the Fourier transform of a function which may possess a singular point or slowly converge at infinity. The proposed method is based on a generalization of the method of the double exponential (DE) formula; the DE formula is a powerful numerical quadrature proposed by H. Takahasi and M. Mori in 1974 [1...
متن کاملClosed-form discrete fractional and affine Fourier transforms
The discrete fractional Fourier transform (DFRFT) is the generalization of discrete Fourier transform. Many types of DFRFT have been derived and are useful for signal processing applications. In this paper, we will introduce a new type of DFRFT, which are unitary, reversible, and flexible; in addition, the closed-form analytic expression can be obtained. It works in performance similar to the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2012
ISSN: 0096-3003
DOI: 10.1016/j.amc.2012.06.055